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Abstract

Zero-inflated time series data are commonly encountered in

many applications, including climate and ecological model-

ing, disease monitoring, manufacturing defect detection, and

traffic monitoring. Such data often leads to poor model fit-

ting using standard regression methods because they tend

to underestimate the frequency of zeros and the magnitude

of non-zero values. This paper presents an integrated frame-

work that simultaneously performs classification and regres-

sion to accurately predict future values of a zero-inflated

time series. A regression model is initially applied to pre-

dict the value of the time series. The regression output is

then fed into a classification model to determine whether

the predicted value should be adjusted to zero. Our regres-

sion and classification models are trained to optimize a joint

objective function that considers both classification errors

on the time series and regression errors on data points that

have non-zero values. We demonstrate the effectiveness of

our framework in the context of its application to a precip-

itation downscaling problem for climate impact assessment

studies.

1 Introduction

Predictive models for time series data are commonly
employed in the fields of economics, finance, epidemi-
ology, ecology, and meteorology, among others. The
prediction accuracy is subject to the choice of model
used, which in turn, may be limited by characteristics
of the time series observations. For example, studies
have shown that the performance of classical regression
models is degraded when applied to data sets with ex-
cess zero values [2, 4, 17, 7, 28]. Such data are typically
encountered in applications such as climate and ecologi-
cal modeling, disease monitoring, manufacturing defect
detection, and traffic monitoring.

Figure 1 shows the histogram of daily precipitation
(in log scale) at a weather station in Canada for the
period between January 1, 1961 and December 31,
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Figure 1: A zero-inflated frequency distribution of daily
precipitation at a weather station in Canada

2000. Nearly half of the observations have precipitation
values equal to zero. Such zero-inflated data, as they
are commonly known, often lead to poor model fitting
using standard regression methods as they tend to
underestimate the frequency of zeros and the magnitude
of non-zero values of the data. A typical strategy
for handling such type of data is to first invoke a
classification model to predict whether the output value
is zero. A regression model, which has been trained on
the non-zero data points, is then applied to estimate
its magnitude only if the classifier predicts a non-
zero output. Such an approach is commonly used for
statistical downscaling of precipitation [30], in which the
occurrence of rain or wet days is initially predicted prior
to applying a regression model to estimate the amount
of rainfall for the predicted wet days. The limitation of
this approach is that the classification and regressions
models are often built independent of each other. As a
result, neither models can glean information from the
other to potentially improve their prediction accuracy.

The objective of this paper is to develop an in-
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Figure 2: Comparison between independent modeling
approach and proposed framework for predicting zero
inflated data

tegrated framework that accurately estimates the fu-
ture values of a zero-inflated time series by simulta-
neous training the classification and regression models.
Specifically, the models are trained to optimize a joint
objective function that penalizes errors in classifying a
data point and errors in predicting the magnitude of
non-zero data points. Given a test point, the regres-
sion model is applied to estimate the magnitude of the
predicted value. The output from the regression model
along with the values of other predictor variables of the
test point are then fed into a classification model to de-
termine whether the predicted value should be adjusted
to zero. The distinction between the traditional two-
step independent modeling approach and our proposed
framework is illustrated in Figure 2.

We demonstrate the effectiveness of our learning
framework in the context of precipitation prediction us-
ing climate data from the Canadian Climate Change
Scenarios Network Web site [1]. Specifically, we com-
pared the performance of our integrated framework
against two baseline methods. The first baseline cor-
responds to applying standard multiple linear regres-
sion (MLR) method on the entire training data, which
includes both dry and rain days. The second baseline
method (SVM-MLR) uses a combination of support vec-
tor machine classifier to predict dry/wet days and mul-
tiple linear regression to predict rainfall amount on wet
days. Both the models are trained independently. Em-
pirical results showed that our proposed framework out-
performs both MLR and SVM-MLR on the majority of
the weather stations investigated in this study.

In summary, the main contributions of this paper
are as follows:

• We present an integrated framework for simultane-
ously learning classification and regression models.

• We showed that the proposed framework is more ef-
fective at predicting zero-inflated time series than

building a single regression model or building inde-
pendent classification and regression models to fit
the time series data.

• We successfully applied our framework to the real-
world problem of downscaling precipitation time
series for climate impact assessment studies.

The remainder of this paper is organized as follows.
Section 2 presents the related work on time series
prediction and zero-inflated regression models. Section
3 introduces the notation and problem formulation.
The integrated classification and regression framework
proposed in this study is presented in Section 4, followed
by a detailed description of our algorithm in Section 5.
Experimental results are given in Section 6. Finally, we
present our conclusions and suggestions for future work
in Section 7.

2 Related Work

Time series prediction has long been an active area
of research with applications in finance [31], weather
forecasting [16][10], network monitoring [8], transporta-
tion planning [20][24], etc. There are many time series
prediction techniques available, including least square
regression [22], recurrent neural networks [19], Hidden
Markov Model Regression [18], and support vector re-
gression [25]. In the Earth science domain, there has
been extensive research on applying time series regres-
sion models for downscaling General Circulation Mod-
els (GCM) data [10, 16, 29]. GCMs are computer-
generated models for simulating future climate condi-
tions under different greenhouse gas emission scenar-
ios. However, the spatial resolution of GCM outputs
are often too coarse to reliably project the future cli-
mate scenarios of a local region. Statistical downscaling
techniques are therefore used to relate the coarse-scale
GCM outputs to the local climate variables such as daily
precipitation and temperature [29].

The motivation behind the combined use of classi-
fication and regression models for time series predic-
tion is due to the zero-inflated data problem. Pre-
vious studies have shown that additional precautions
must be taken to ensure that the excess zeros do not
lead to poor fits [2, 4, 17, 7, 28] of the regression
models. A typical approach to model a zero-inflated
data set is to use a mixture distribution of the form
P (y|x) = απ0(x) + (1 − α)π(x), where π0 and π are
functions of the predictor variables x and α is a mixing
coefficient that governs the probability an observation
is a zero or non-zero value. This approach assumes that
the underlying data is generated from known parametric
distributions, for example, π may be Poisson or nega-
tive binomial distribution (for discrete data) and log-



normal or Gamma (for continuous data). In contrast,
the framework presented in this paper does not require
making such a strong assumption about the distribution
of the data.

3 Preliminaries

Consider a multivariate time series L = (xt, c′t), where
t ∈ {1, 2, · · · , n} denote the elapsed time, xt is a d-
dimensional vector of predictor variables at time t, and
ct is the corresponding value for the response (target)
variable. Given an unlabeled sequence of multivariate
observations xτ , where τ ∈ {n + 1, · · · , n + m}, our
goal is to learn a target function f(xτ ,w) that best
estimates the future values of the response variable at
each time τ . The set of weights w = [w1, w2, ..., wd]

T

are the regression coefficients to be estimated from the
training data L. For applications such as statistical
downscaling, the predictor variables xτ correspond to
climate variables at large spatial scales generated from
computer-driven general circulation models (GCMs).

For zero-inflated data, the frequency of zero values
in the time series is relatively larger than the frequency
of each non-zero values, as shown in Figure 1. The
response variable c′t can be mapped into a binary class
ct, where

(3.1) ct =
{

1, if c′t > 0;
0, otherwise.

For brevity, we use the notation y ≡ f(x,w) as the
predicted value of the response variable and y as its
corresponding predicted class.

4 Framework for Simultaneous Classification
and Regression

This paper considers a framework for predicting future
values of a zero-inflated time series using a combination
of classification and regression models. The models in
our framework are trained to optimize a joint objective
function that considers both the classification errors on
the time series and regression errors for the non-zero val-
ues. A preliminary version of this work appeared in a
workshop paper [3], which uses support vector machine
(SVM) as the underlying classifier. The method is com-
putationally expensive since it requires the SVM classi-
fier to be re-trained at each iteration. Furthermore, it
does not guarantee convergence of the algorithm. The
framework presented in this paper trains an SVM clas-
sifier only once after the parameters of the regression
model have been determined. Proofs of convergence of
our algorithm are also presented in this section.

We consider multiple linear regression (MLR) as
the underlying regression model in this study, in which

f(x,w) = wT x. Extending the approach to nonlinear
models will be a subject for future research.

4.1 Objective Function The classification and re-
gression models developed in this study are designed to
minimize the following objective function:

arg min
w,y

L(w,y) =
n∑

i=1

ci(c′i − yiy
′
i)

2 + T1

n∑

i=1

(yi − ci)2

+ T2

n∑

i,j=1

si,j [ciy
′
i − cjy

′
j ]

2 + T3||w||2

where,
y′i =

∑

d

wdxi,d, yi ∈ {0, 1}

and sij is the similarity between the values of the
predictor variables at ti and tj

The rationale for the design of our objective func-
tion is as follows. The first term is somewhat similar to
the standard least-square formulation of multiple linear
regression, except the estimation of w is based on the
non-zero values in the time series. The regression model
is therefore biased towards estimating the non-zero val-
ues more accurately instead of being influenced by the
over-abundance of zeros in the time series. The prod-
uct yiy

′
i in the first term corresponds to the predicted

output of our joint classification and regression models.
The second term in the objective function is equivalent
to misclassification error in training data. The third
term corresponds to a graph regularization constraint
to ensure smoothness and consistency in the model pre-
dictions. Specifically, for two highly similar data points
xp and xq, i.e., spq is large, we penalize the model if
the predicted values of the response variables are incon-
sistent. Finally, the last term in the objective function
is equivalent to the L2 norm used in ridge regression
models to shrink the coefficients in w.

We consider each data point to be a given elapsed
time t ∈ {1, 2, · · · , n} in the time series. An n × n
similarity matrix S = [sij ] is computed between every
pair of data points based on the similarities of their
predictor variables. Prior to computing the similarity
matrix, each variable is standardized by subtracting its
mean value and then dividing by its corresponding stan-
dard deviation. The standardization of the variables is
needed to account for their varying scales. We use Pear-
son correlation coefficient to compute the similarity be-
tween each pair of data points and then transform the
value to a range between 0 and 1 to ensure ensure all the
terms in the objective function are non-negative. The
choice of Pearson correlation as our similarity measure
is due to the popularity of the measure in the Earth



Science domain. We plan to investigate other similar-
ity functions such as the radial basis function (RBF) as
part of our future work.

4.2 Parameter Estimation The objective function
can be further expanded as follows:

L(w,y) =
n∑

i=1

ci(c′i − yi

∑

d

wdxi,d)2 + T1

n∑

i=1

(yi − ci)2

+ T2

n∑

i,j=1

si,j

(∑

d

ciwdxi,d −
∑

d

cjwdxj,d

)2

+ T3||w||2

or equivalently,

L(w,y) =
n∑

i=1

ci(c′i − yi

∑

d

wdxi,d)2

+ T1

n∑

i=1

(yi − ci)2 + T3||w||2

+ T2

n∑

i,j=1

si,j

((∑

d

ciwdxi,d

)2

+
(∑

d

cjwdxj,d

)2

− 2
∑

d,d′
cicjwdwd′xi,dxj,d′

)

To estimate the regression parameter w and class
labels y, we employ the following iterative procedure.
First, we compute the partial derivative of L(w,y) with
respect to each of the w’s and set it to zero (assuming
y is fixed):

∂L

∂wk
=

[
− 2

n∑

i=1

ci

(
c′i − yi

∑

d

wdxi,d

)(
yixi,k

)

+ 2T2

n∑

i,j=1

si,j

((∑

d

ciwdxi,d

)(
cixi,k

))

+ 2T2

n∑

i,j=1

si,j

((∑

d

cjwdxj,d

)(
cjxj,k

))

− 2T2

n∑

i,j=1

si,j

(∑

d

cicjwd(xi,dxj,k + xi,kxj,d)
)

+ 2T3wk

]
= 0

This reduces to a system of linear equations of the form
Aw = b where

bk =
n∑

i=1

ciyic
′
ixi,k

and A is a square matrix of dimension d×d whose non-
diagonal elements is given by,

Ak,l = 2T2

n∑

i,j=1

si,jcixi,lxi,k

− 2T2

n∑

i,j=1

si,jcicjxi,lxj,k

+
n∑

i=1

ciyixi,lxi,k

and diagonal elements

Ak,k = 2T2

n∑

i,j=1

si,jcix
2
i,k

− 2T2

n∑

i,j=1

si,jcicjxi,kxj,k

+
n∑

i=1

ciyix
2
i,k + T3

To estimate y, we minimize the following part of
the objective function that depends on y:

Lc(y) =
n∑

i=1

ci(c′i − yiy
′
i)

2 + T1

n∑

i=1

(yi − ci)2

subject to the constraint yi ∈ {0, 1}. It is straightfor-
ward to show that Lc is minimized according to the
following rule:

(4.2) yi =
{

1, if ci = 1 and (c′i − y′i)
2 > c′2i + T1;

0, otherwise.

The predicted class labels y are then used to re-
estimate the regression coefficients w. This procedure is
repeated until the regression coefficients and class labels
converge.

4.3 Proof of Convergence This section presents
the proof of convergence of our iterative update al-
gorithm. Let (wt,yt) be the regression coefficients
and class labels estimated after the t-th iteration and
(wt+1,yt+1) be the regression coefficients and class la-
bels estimated after the (t + 1)-th iteration.

Proposition 1. Assuming that the class labels yt are
fixed, L(wt+1,yt) ≤ L(wt,yt).



Proof. For a fixed yt, let Lr(w) be part of the objective
function that depends on the regression coefficients w:

Lr(w) =
n∑

i=1

ci(c′i − yi

∑

d

wdxi,d)2 + T3||w||2

+ T2

n∑

i,j=1

si,j

(∑

d

ciwdxi,d −
∑

d

cjwdxj,d

)2

The Hessian matrix H of Lr(w) is given by:

∂2Lr

∂wk∂wl
= 2

n∑

i=1

ciyi
2xi,kxi,l + 2T3δkl

+ 2T2

n∑

i,j=1

si,j(cixi,k − cjxj,k)(cixi,l − cjxj,l)

where δkl = 1 if k = l and zero otherwise. Since
the parameters T2 and T3 are non-negative, it can be
shown that, for any non-zero vector z with real values,
zT Hz ≥ 0, i.e., the Hessian matrix is positive semi-
definite. Thus, the stationary point wt+1 minimizes
L(wt+1) and Lr(wt+1) ≤ Lr(wt).

Proposition 2. Assuming that the regression coeffi-
cients are fixed, L(wt+1,yt+1) ≤ L(wt+1, yt).

Proof. For a fixed wt+1, let L(wt+1,yt) =
Lc(yt) + T2

∑n
i,j=1 si,j [ciy

′
i − cjy

′
j ]

2 + T3||w||2. Note
that last two terms are independent of yt. Since our
update formula for yt minimizes Lc(y), it follows that
L(wt+1,yt+1) ≤ L(wt+1,yt).

Theorem 4.1. The objective function L(w) is mono-
tonically non-increasing given the update formula for w
and y.

Proof. The update formula iteratively modifies the
objective function as follows: L(wt,yt) ⇒ L(wt+1,yt)
⇒ L(wt+1,yt+1). Using the above propositions we
have L(wt+1,yt) ≤ L(wt,yt) and L(wt+1,yt+1) ≤
L(wt+1,yt). Therefore, L(wt+1,yt+1) ≤ L(wt,yt)

Lemma 4.1. The objective function will eventually con-
verge, as the value of the loss function is always non-
negative and since we know L(w) is monotonically de-
creasing.

4.4 Classification of Test Data The update for-
mula presented in the previous subsections compute
the regression coefficients w and class labels y of the

training examples in such a way that minimizes the ob-
jective function. For a given test example xτ , where
τ ∈ {n + 1, · · · , n + m}, the predicted value of the re-
gression model can be computed as follows: y′τ = wT xτ .
However, the classification output cannot be determined
since the update formula for y depends on the true class
labels c, as shown in Equation (4.2). Therefore, to pre-
dict the class label y, we build an SVM classifier on
(xt,y′t) as the d + 1-dimensional feature vector and the
estimated (yt) as the class labels using only examples
from training data. Once the classifier has been con-
structed, it can be applied to predict the class label of a
test example. The final output of our joint classification
and regression model is the product yτy′τ (see Figure 2).

Empirically, it was found that SVM may be used
as an alternate classifier to predict y at each iteration,
instead of the update formula described above. But
since the objective function of the generic classifier
does not necessarily minimize both the first and second
term of Lc(y) simultaneously, convergence cannot be
guaranteed.

5 Algorithm

A summary of our proposed framework is presented
in Algorithm 1. In the remainder of this paper, our
algorithm will be denoted as ZICR (where ZICR stands
for Zero-Inflated Classification-Regression method).

Algorithm 1 Algorithm for Concurrent Regression and
Classification
Input:
(xt, c′t): A multivariate time series with d-dimensional
predictor variables xt and response variable c′t.
(xτ ): A sequence of unlabeled observations.
Output:
w: Regression coefficients
(zτ ): Predicted values of unlabeled sequence.

Method:
Training Phase:
1. Set c = (c′ > 0)
2. Initialize y = c
3. Repeat until convergence
3a. Update w by solving Aw = b
3b. Update y using Equation (4.2)
4. Train an SVM classifier g : (xt,y′t) → yt

Testing Phase:
5. ∀τ : y′τ = wT xτ

5. ∀τ : yτ = g(xτ , y′τ )
6. ∀τ : zτ = yτy′τ

We assume the time series data has been partitioned



into a training set, a validation set (for model selection),
and a test set. Model selection is needed to estimate the
parameters T1,T2,T3 of our objective function L(w,y).

The class labels c of the training examples are ob-
tained based on the response variable c′. The training
phase of the algorithm starts by setting y = c for all
the n-training examples. It then iteratively updates the
regression coefficients w and class labels y according to
the methodology presented in the previous section. At
this stage, the value of the objective function is com-
puted and saved for testing convergence of the objec-
tive function. Upon convergence, an SVM classifier g
is constructed to learn the mapping between the input
features x,y′ and output class y.

Once the training phase is completed, the Testing
phase begins. Testing is performed by first applying
the multiple linear regression model to the predictor
variables xτ . This is followed by invoking the SVM
classifier to predict the class label yτ for the m test
examples. The classifier takes xτ and y′τ as input and
returns class labels yτ . Finally, the prediction output is
obtained by setting zτ = yτy′τ .

The time complexity of the training phase of the
algorithm is O(k(n2d + d3)), where n is the number of
training examples, d the number of predictor variables
and k is the maximum number of iterations required
for convergence. The computational complexity of the
training phase is composed of two major parts: the
first that requires computing the similarity matrix and
the second that requires iteratively solving w and y.
The time needed to compute the similarity matrix is
(O(n2d)). The time complexity of each iteration refers
to the time needed to compute w (O(n2d2 + d3)) plus
time needed to compute y (O(n)). Hence, for maximum
iterations set to k, the time complexity for the training
phase is O(k(n2d + d3)), where d ¿ n.

6 Experimental Evaluation

This section presents the experimental results to demon-
strate the effectiveness of our proposed framework.

6.1 Experimental Setup The algorithm detailed in
the earlier section was applied to climate data from the
Canadian Climate Change Scenarios Network Web site
[1]. The response variable to be regressed corresponds
to daily precipitation values measured at 37 weather
stations in Canada. The predictor variables correspond
to 26 coarse-scale climate variables derived from the
NCEP Reanalysis data set, which include measurements
of sea-level pressure, wind direction, vorticity, and
humidity, as shown in Table 1. The data are available
for a 40-year period, 1961 to 2001. We also truncated
the time series for each weather station to exclude the

days in which the precipitation values are missing.

Table 1: List of predictor variables for precipitation
prediction.
Predictor Variables
Mean sea level pressure Surface zonal velocity
Surface airflow
strength

Surface meridional ve-
locity

Surface vorticity Surface wind direction
Surface divergence Mean temp at 2m
500 hPa airflow
strength

850 hPa airflow
strength

500 hPa zonal velocity 850 hPa zonal velocity
500 hPa meridional ve-
locity

850 hPa meridional ve-
locity

500 hPa vorticity 850 hPa vorticity
500 hPa geopotential
height

850 hPa geopotential
height

500 hPa wind direction 850 hPa wind direction
500 hPa divergence 850 hPa divergence
Relative humidity at
500 hPa

Relative humidity at
850 hPa

Near surface relative
humidity

Surface specific humid-
ity

We compared the performance of our algorithm
against the multiple linear regression (MLR) model.
MLR uses the least square criterion to estimate the
weight vector w of the model. Our algorithm was also
compared with the approach of combining MLR with
SVM (SVM-MLR). In SVM-MLR, SVM was used to
learn a classifier model to differentiate between Rain
and NoRain days, and MLR was learnt on rain days
only. Finally, for the given test set MLR is applied only
to those days classified as a Rain day. For the choice of
SVM during the evaluation phase, a choice of the kernel
(Linear or RBF) and its respective parameter are made.
The choice of the SVM kernel for ZICR was limited to
a linear kernel. Future experiments will include a wider
selection during the evaluation phase.

We used the following criteria to evaluate the per-
formance of the models:

• Root Mean Square Error (RMSE), which measures
the difference between the actual and predicted
values of the response variable, i.e.: RMSE =√∑n

1 (c′i−y′i)
2

n .

• Accuracy, which measures the number of Rain and
NoRain days predicted correctly by the model.

• F-measure, which is the harmonic mean between
recall and precision values for rain days.



6.2 Experimental Results The purpose of our ex-
periment is to demonstrate the following:

1. Limitations of classical regression models in terms
of handling zero-inflated time series data.

2. Performance comparison between classical regres-
sion models and our proposed framework.

6.2.1 Effect of Zero-Inflated Time Series Data
The objective of this experiment is to demonstrate the
effect of increasing number of zeros in a time series on
the performance of a regression model. Specifically,
given the precipitation time series of a randomly se-
lected weather station, we classified each day as NoRain
or Rain, depending on the amount of precipitation it re-
ceives is equal to or greater than zero. We then created
several training sets of different sizes and varying per-
centage of NoRain and Rain days by randomly sampling
the original time series. A disjoint test set of size ’ten
years’ is used for all the experiments in this subsection.

(Non−Rain days/ Rain days) in TrainingSet
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Figure 3: Effect of increasing the number of NoRain
days on performance of regression model (best viewed
in color).

We evaluated the performance of two multiple linear
regression (MLR) models: (1) MLR1, which is trained
on both Rain and NoRain days and (2) MLR2, which
is trained on Rain days only. Figure 3 compares the
RMSE values of both models for Rain days in the test
set. The horizontal axis corresponds to the ratio of
NoRain to Rain days in the training set. The larger
the ratio, the more inflated the number of zeros in
the training data. The vertical axis corresponds to
the training set size, where each unit on the scale
represents a period of three months. The value of each
cell indicates the performance improvement when using

MLR2 to predict the Rain days:
(6.3)

%Improvement =
RMSE(MLR1)− RMSE(MLR2)

RMSE(MLR1)

Since the % Improvement is greater than or equal to
zero, this indicates that MLR2 consistently outperforms
MLR1 in terms of predicting future Rain days irrespec-
tive of the training set size. The amount of improvement
becomes even more pronounced when the percentage of
NoRain days in the training data increases. A similar
improvement pattern is observed for all the weather sta-
tions investigated in this study, as shown in Figure 4.
In contrast, MLR1, which is trained on both Rain and
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Figure 4: Comparison of RMSE values (Tested on
Rain days only) for MLR models trained on all days
compared with models trained only on Rain days.

NoRain days, has a lower RMSE compared to MLR2

when applied to all the days in the test set, as shown in
Figure 5. This is because MLR2 tends to overestimate
the amount of precipitation for the NoRain days.

In summary, the experiment given in this section
clearly justifies the rationale for applying a combination
of classification and regression models to better estimate
the precipitation amount of Rain days.

6.2.2 Impact of Coupling the Classifier and
Regression Model Creation The objective of this
experiment is to demonstrate the advantage of building
a classifier and regression model in conjunction with
each other, as against building them independent of
the other for zero-inflated time-series data. Specifically,
empirical results demonstrating improvement in the
classification accuracy, F-measure of classification as
well as RMSE of the predictors are provided.
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Figure 5: Comparison of RMSE values (Tested on All
days) for MLR models trained on all days compared
with models trained only on Rain days.

We evaluated and compared the performance of
two multiple linear regression models. In the first
model, MLR is trained on all days and a quadratic
discriminant analysis (QDA) trained on ground truth
response variable. In the second model, again MLR
is trained on all days but the QDA trained on the
predicted response values y′ = wT x. The results
of the experiment show that the model trained on
the predicted response values outperformed the model
trained on ground truth response variable for all 37
stations, when it came to RMSE, Classification and
F-Measure. In particular, the average improvements
were 13.4% and 19.3% when it came to classification
accuracy.

In summary, these empirical results provide moti-
vation to try and integrate the classifier and regression
models to take into consideration the accuracy of the
other’s prediction for each individual data point.

6.2.3 Performance Comparison This section
compares the RMSE, accuracy, and F-measure values
of the predicted response variable (Precipitation) for
our proposed supervised (ICR) framework against that
of multiple linear regression (MLR) and SVM-MLR
(A model that combines MLR and SVM). All the
experiments were performed using a training size (n) of
3 years starting from the first observation in the time
series. The test set size (m) was also fixed at 1 year.
After calculating the RMSE on the test set, the training
set was shifted by 3 years, such that it now occupied
the data set used for testing in the previous iteration.

The experiment is repeated 5 times for each station.
The RMSE values reported in this section is the mean
value of all 5 iterations. The same approach is used to
compute the RMSE values for Rain days, accuracy (for
all days), F-measure for Rain days only and F-measure
for NoRain days only. We present the results for 37
weather stations when ICR is compared with both
MLR and SVM-MLR. Classification accuracy, and
F-measures related to classification accuracy of MLR is
not plotted on account of MLR not having an explicit
classifier.

As shown in Figures 6 and 7, our supervised model,
ICR significantly outperformed the MLR model (trained
on all days) and the SVM-MLR model in terms of their
RMSE values for predicting both Rain and NoRain days.
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Figure 6: Comparison of RMSE values (for all days)
among MLR, SVM-MLR and ICR.
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Figure 7: Comparison of RMSE values (for all days)
among MLR, SVM-MLR and ICR.

ICR outperformed MLR in 36 out of 37 stations and
outperformed SVM-MLR in 30 out of the 37 stations. In
terms of percentage improvement in RMSE for all days,



ICR indicated an average 8% improvement over MLR
and 5.8% improvement when compared to SVM-MLR.
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Figure 8: Comparison of RMSE values (for Rain days)
among MLR, SVM-MLR and ICR.
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Figure 9: Comparison of RMSE values (for Rain days)
among MLR, SVM-MLR and ICR.

In terms of the RMSE values for Rain days only,
as shown in Figures 8 and 9, ICR consistently outper-
formed both the MLR and SVM-MLR model with ICR
outperforming MLR in 35 stations and ICR outperform-
ing SVM-MLR in 33 stations. When evaluating average
RMSE value for Rain days only, we found that ICR
had an improvement of 5.3% over MLR and 8.6% over
SVM-MLR.

MLR does not inherently classify any days as Rain
or NoRain. Hence, we did not plot a comparison
between ICR and MLR with regards to classification
accuracy and F-Measure.

As shown in Figures 10 and 11, ICR outperformed
SVM-MLR in 36 of the 37 stations and showed a
9.1% improvement in classification accuracy. At the
same time, in terms of F-measure for Rain days, our
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Figure 10: Comparison of classification accuracy (for all
days) between SVM-MLR and ICR.
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Figure 11: Comparison of classification accuracy (for all
days) between SVM-MLR and ICR.



model outperformed SVM-MLR, as shown in Figures
12, 13. ICR outperformed SVM-MLR in 35 out of the
37 stations.

Although, MLR does not inherently classify any
days as Rain or NoRain, we trained the Quadratic Dis-
criminant Analysis(QDA) classifier mentioned earlier on
the MLR output. ICR witnessed a 21.2% improvement
in overall classification accuracy.
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Figure 12: Comparison of F-Measure (for Rain days)
between SVM-MLR and ICR.

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stations

F
−

M
ea

su
re

 (
R

ai
n 

da
ys

)

 

 

SVM−MLR
ICR

Figure 13: Comparison of F-Measure (for Rain days)
between SVM-MLR and ICR.

With regard to F-measure for NoRain days, ICR
outperformed SVM-MLR, in 36 stations. As shown in
Figures 14,15 that shows the comparison of F-Measure
for NoRain days between SVM-MLR and ICR, ICR
outperformed SVM-MLR in all but one station and
witnessed an 8.1% improvement in F-measure results.

7 Conclusions

This paper presents a novel approach for predicting
future values of a time series data that are inherently
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Figure 14: Comparison of F-Measure (for NoRain days)
between SVM-MLR and ICR.
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Figure 15: Comparison of F-Measure (for NoRain days)
between SVM-MLR and ICR.



zero-inflated. The proposed framework decouples the
prediction task into two steps—a classification step to
predict whether the value of the time series is zero
and a regression step to estimate the magnitude of the
non-zero time series value. The effectiveness of the
model was demonstrated on climate data to predict the
amount of precipitation at a given station.

The framework presented in this paper assumes a
linear relationship between the predictor and response
variables. For future work, we plan to extend the frame-
work to capture nonlinear relationships via the use of
kernel functions and experiment with better parameter
selection. The framework can also be extended to a
semi-supervised learning setting.
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